По сообщению Interfax.ru, подразделение Yandex Data Factory компании Яндекс намерена заняться задачей разработки предложений для удержания абонентов. Сообщается, что YDF проанализировал более 100 параметров, описывающих поведение 100 тысяч игроков World of Tanks. Получившаяся в итоге модель прогноза оттока игроков, оказалось на 20-30% точнее стандартных для игровой индустрии инструментов анализа.
Леонид Делицын, аналитик инвестиционного холдинга ФИНАМ:
Вряд ли Яндекс действительно возьмёт на себя задачу разработки предложений для удержания чужих абонентов. Удержать своих абонентов может только сам оператор. Мне не удалось найти запись в блоге или в корпоративном разделе, на который ссылаются новостное агентство, но думаю, что речь шла только о прогнозировании оттока абонентов. Для этого требуется оценить так называемую «функцию дожития» абонента, или, альтернативно, функцию риска оттока пользователя. Эти задачи хорошо известны в статистике, в отличие от успешных кейсов их применения на практике.
Яндексу, безусловно, нужен поток позитивных новостей, и большие данные – благодарная тема с точки зрения их генерации. Мы вступаем в эпоху, когда машины ежесекундно собирают о нас информацию, куда-то её отправляют, где-то архивируют и хранят, и иногда даже перерабатывают. Машины уже знают о каждом из нас гораздо больше, чем мы сами. Вряд ли сами игроки в World of Tanks способны измерять своё поведение при помощи 100 параметров. И вряд ли все они сегодня знают, как долго останутся в игре. Конечно, не все эти 100 параметров одинаково важны, вот только заранее неизвестно, какие – важны, а какие – не очень. Чтобы выделить важные параметры, требуется изучить поведение 100 тысяч игроков — но поскольку Яндекс подсказывает ответы сотне миллионов посетителей, эта задача ему по силам.
Вообще говоря, применений методов машинного обучения к большим данным довольно много, многие из них — довольно яркие и могут генерировать популярные новости. Это хорошо для компании как само по себе, так и для решения задачи ободрения аналитиков фондового рынка. Именно эта задача – самая сложная сегодня для Яндекса. А задача прогнозирования оттока клиентов – довольно старая и хорошо изученная, подходы к ее решению опубликованы. Вопрос лишь в практической реализации тех подходов, которые работоспособны, когда клиентские базы насчитывают миллионы пользователей. В этой области на «шлифование» решения с целью сделать его пригодным для решения практических задач может уйти больше лет и средств, чем на разработку теории. По сообщениям новостных агентств благодаря использованию проприетарных алгоритмов Яндексу удаётся строить на 20-30% более точные решения, чем удается конкурентам. Эта разница не выглядит такой уж существенной. Думаю, что главное конкурентное преимущество Яндекса – в наличии штата опытных специалистов, софта и «железа».
Помимо активизации Яндекса в b2b секторе, важно ещё следующее. Судя по всему, повторяется (или продолжается история с SaaS), когда вместо возникновения новых, независимых компаний мы наблюдаем возникновение нового канала продаж у крупных производителей и дистрибьюторов программного обеспечения. Большие данные являются вторым из наиболее популярных у венчурных фондов направлений инвестирования, согласно результатам исследования Venture Barometer Russia 2014, они уступают только финансовым технологиям, да и то, отставание нельзя назвать значимым. Инвесторы понимают перспективность машинного обучения в период растущей волны M2M-технологий – ведь устройства должны не просто обмениваться данными, но и изменять своё поведение в зависимости от полученной информации. Короче говоря, инвесторы хотят вложить деньги в направление «большие данные». Но вряд ли могут.
Дело в том, что в случае больших данных, требуются, во-первых, мощная аппаратная база, а во-вторых, действительно, высокие технологии. На одном лишь поверхностном знании методов машинного обучения много не построишь, поскольку для работы с большими данными методы должны быть быстрыми и устойчивыми. Практически полезные методы отшлифованы годами практики – и у Яндекса такая практика есть, а у новых игроков её, скорее всего нет. Объём первоначальных вложений, по-видимому, тоже превосходит сумму, н на которую венчурные инвесторы были бы готовы рискнуть, чтобы попробовать новое направление. Простые задачи, которые можно решить при помощи не очень больших данных и специалистов обычной квалификации за сравнительно небольшую сумму, вряд ли принесут высокую прибыль, — просто потому, что решить их могут многие, а значит, неизбежна жёсткая конкуренция. Яндекс в этой ситуации оказался защищён уникальным барьером, естественно построенным за годы работы над поисковой машиной, Яндекс-маркетом и системой управления контекстной рекламой.
Поэтому в области «больших данных», как и в индустрии SaaS, главными игроками рынка окажутся не независимые стартапы, а уже хорошо известные крупные компании. Кстати, услугу по прогнозированию оттока абонентов Web-сайтам мог бы предоставлять не только Яндекс, но и, например, российские интернет-счётчики, LiveInternet, OpenStat и другие. Если Яндекс раскрутит эту услугу, то она войдёт в моду, и для других игроков возникнет поле деятельности – поиск минимально затратной реализации решений наиболее ходовых задач.
Читайте также
Последние статьи
- TEAMGROUP выпустила память T-FORCE DELTA RGB DDR5 7200MHz
- Для геймеров и меломанов Edifier расширяет линейку наушников двумя беспроводными моделями
- TEAMGROUP и BIOSTAR представили память T-FORCE DELTA RGB DDR5 «Валькирия»
- Для геймеров и энтузиастов — новые коврики Bloody
- ASUS представила компьютерный корпус TUF Gaming GT502
Наиболее Комментируемые
Свежие комментарии
- zhorasmagin к записи Google Cardboard Plastic
- meghanfx69 к записи Google Cardboard Plastic
- gerald19 к записи Лучшие киберспортсмены выбирают Logitech
- liliaqy2 к записи Crave — Taking a spin on a real-life hoverboard
- itsukarin к записи Google Cardboard Plastic
Фото
- Обзор и тестирование материнской платы ASUS ROG Strix X299-E Gaming (0 Фото)
- Обзор и тестирование ASUS ROG Strix Z370-E Gaming (8 Фото)
- Обзор и тестирование материнской платы ASUS TUF Z370-PRO GAMING (0 Фото)
- Обзор и тестирование материнской платы ASUS ROG Strix Z370-I Gaming (0 Фото)
- Тест и обзор ASUS ROG Strix GTX 1070 Ti (7 Фото)